Devin Mulvey

Curriculum Vitae

3261 W State St St Bonaventure, NY 14778 ⊠ dmulvey@sbu.edu

Note: Boldface text throughout the document is a hyperlink. For example, this is my Google Scholar.

Education

2018-2023 Ph.D. Chemistry (Physical Chemistry)

- University of Pittsburgh
- o Advisor: Kenneth Jordan
- o GPA: 3.75
- Thesis: "Bridging the Gap: Demonstrating the Connection Between Non-Valence Correlation-Bound Anions and Image Potential States Using a One-Electron Model"

2015-2018 B.S. Chemistry and B.A. Mass Communications (Journalism),

- Bloomsburg University
- o GPA: 3.62

Academic Positions Held

Fall 2024 - Postdoctoral Researcher and Lecturer - St. Bonaventure University

Present o Advisor: Scott Simpson

- Job duties include:
 - Teaching
 - Research
 - Course development
 - Grant writing
 - Outreach

Summer 2018 Research and Teaching Assistant – University of Pittsburgh

- Fall 2023 O Job duties included:
 - Recitation Lectures
 - Research
 - Undergraduate and high school research mentorship
 - Grant writing

Courses Taught

St. O CHEM-091 - Problem Solving in Chemistry

Bonaventure • CHEM-101 – General Chemistry I Lecture

University o CHML-101 – General Chemistry I Lab

(Instructor of O CHEM-102 – General Chemistry II Lecture

Record) • CHML-102 – General Chemistry II Lab

o CHML-402 – Physical Chemistry II Lab (Anticipated for SP 2026)

• CHEM-498 – Undergraduate Research (Anticipated for SP 2026)

University of OCHEM-0970 - General Chemistry for Engineers II

Pittsburgh O CHEM-0120 - General Chemistry II

(TA) • CHEM-0110 – General Chemistry I

Technical Skills

Certifications OREC Sections 1 and 6 for Human Participants, SEHSA/RCRA Chemical Waste Handling Certified

Programming Python, C++/C, Bash (Linux, Unix CLI), LATEX

Software LOBSTER, VASP, Psi4, Orient, CamCASP, Molpro, ORCA, CFOUR, Gaussian, PySCF, Spartan, VMD, Avogadro, MS Office, LibreOffice

Research

2024-Present My post doctoral work consists of both scientific and educational research.

- Scientific research: I investigate the molecular corking effect, where ligands like N-heterocyclic carbenes (NHCs) selectively and reversibly bind to catalytic atoms in single-atom alloys (SAAs), using van der Waals-corrected DFT and localized orbitals from plane-wave basis sets.
- Educational research: I study the integration of generative AI into chemistry curricula, focusing on Al-assisted lab and lecture assignments that teach prompt engineering, data analysis, and safe, critical use of third-party tools like OpenAI.
- 2019-2023 The core of my doctoral research was developing approximate, but quantitatively accurate models to describe the non-valence correlation-bound (NVCB) anions of finite analogues of graphene, referred to as polycylic aromatic hydrocarbons (PAHs) and graphene nanoflakes. Accurately modeling the non-covalent interactions stabilizing these anions is a challenge in and of itself, but the culmination of my research enabled us to draw a connection between the NVCB anions of these finite hydrocarbons and the analogous loosely-bound anionic states of graphene, referred to as image potential states.
- 2020-2022 I collaborated with members of the Jordan group and researchers from Pitt's Schools of Computing and Information (Tang group) and Electrical and Computer Engineering (Yang group) to develop Q-GPU, a framework integrated into Qiskit for efficiently simulating quantum circuits on classical hardware. Q-GPU leverages both CPU and GPU resources to simulate systems with tens of qubits, providing a scalable alternative to physical quantum computers.
- 2016-2018 Used DFT and the Born-Haber cycle to assess the radical scavenging capabilities of fullerenols $C_{60}(OH)_n$ $(n=1,2,3,\dots)$. Began developing graph representations to identify and categorize the symmetry and electrostatics of hydrogen bonding networks on the surface of fullerenols as a predictor of antioxidant activity.

Publications

- D. M. Mulvey and S. M. Simpson, "Characterizing σ donation and π backbonding for simple, representative molecular "corks" on Cu/Pd SAA Surfaces", 2025 [In-Preparation].
- D. M. Mulvey and S. M. Simpson, "Exploring Generative AI Application in General Chemistry: A Lab-Based Study of Al Assisted Analysis and Critical Evaluation of Al Generated Outputs", 2025 [In-Preparation].
- D. M. Mulvey, K. D. Jordan, M. J. Rutter, and A. J. Misquitta, "A Practical Electrostatic Model for Hexagonal Polycyclic Aromatic Hydrocarbons and Carbon Nanoflakes: Implications for Graphene", 2025 [In-Preparation].
- S. M. Simpson and D. M. Mulvey, "Tools for Understanding Molecular Orbitals Interactions of Molecules on Surfaces - Density Functional Theory Calculations of H_2 Adsorbed on Cu(111) and Pd/Cu(111)", Ind. Eng. Chem. Res., (2025) [Submitted].
- D. M. Mulvey and K. D. Jordan, "Demonstrating the Connection Between Non-valence Correlationbound Anions and Image Potential States using a One-Electron Model Hamiltonian", J. Phys. Chem. Lett., (2024) DOI:10.1021/acs.jpclett.4c01308
- D. M. Mulvey, "Bridging the Gap: Demonstrating the Connection Between Non-Valence Correlation-Bound Anions and Image Potential States Using a One-Electron Model", (2024) Dissertation Thesis
- D. M. Mulvey and K. D. Jordan, "Application of a Fluctuating Charge Polarization Model to Large Polyaromatic Hydrocarbons and Graphene Nanoflakes", J. Phys. Chem. Lett. 0, 14 (2023) DOI: 10.1021/acs.jpclett.3c02013
- D. M. Mulvey and K. D. Jordan, "Progress Towards a One-Electron Model for the Non-valence Correlation-bound Anions of Polycyclic Aromatic Hydrocarbons", Electron. Struct. 4, 014010 (2022). DOI:10.1088/2516-1075/ac522a

Y. Zhao, Y. Guo, Y. Yao, A. Dumi, D. M. Mulvey, S. Upadhyay, Y. Zhang, K. D. Jordan, J. Yang, and X. Tang, "Q-GPU: A Recipe of Optimizations for Quantum Circuit Simulation Using GPUs", International Symposium on High-Performance Computer Architecture, (2022), DOI: 10.1109/HPCA53966.2022.00059

Financial Support

Spring 2025 - • **Keenan-Martine Grant**

Spring 2026 - Amount: \$ 3978.93

- Title: Enhancing Teaching and Learning in Chemistry Labs via Vernier LabQuest Mini 2 Integration

- Agency: St. Bonaventure University

Spring 2025 - • **Keenan-Martine Grant**

Spring 2026

- Amount: \$ 3972

- Title: Fostering GenAl Literacy and Competency as a Tool for Scientific Writing and Data Analysis in Chemistry Courses

- Agency: St. Bonaventure University

Summer 2018 O Chair's Scholar Summer Research Fellowship and Excellence Award

- Amount: \$ 5300

- Agency: University of Pittsburgh

Scientific Community Engagement

2025 • Presented the following talks at ACS Fall 2025:

- Characterizing σ donation and π backbonding in molecular "corks" on copper-palladium single-atom alloy surfaces
- Exploring generative AI application in general chemistry: A lab-based study of prompt engineering, AI assisted analysis, and critical evaluation of AI generated outputs
- Attended Mercury Consortium 2025 hosted at University of Pittsburgh
- 2024 Attended Mercury Consortium 2024 hosted at UC Merced.
- 2022 Gave an oral presentation at the Tinker Developer Workshop.
 - Gave an oral presentation at the TSRC summer school, "Many-Body Interactions: From Quantum Mechanics to Force Fields".
- 2021 O Gave an oral presentation at the Advanced Force Fields symposium at the Fall National ACS meeting.
 - Gave an oral presentation at the Real Space Methods for the Electronic Structure Problem: **Dynamics and Applications** Session at the March National APS meeting.
- 2020 Attended the virtual TSRC summer school, "Many-Body Interactions: From Quantum Mechanics to Force Fields".

Outreach: Past and Present

High School Developed and implemented a high school research project providing a broad introduction to computa-Summer tional and theoretical chemistry. The student built a Raspberry Pi 5 to explore computing hardware, Research then used it to access a university cluster via SSH. They ran quantum chemical calculations to model Mentorship the hydrogen atom transfer (HAT) mechanism of ascorbate anion as a free radical scavenger, analyzed (2025)the results, and presented their findings, gaining experience across the full computational chemistry pipeline.

ICE-T Worked with high school students to develop novel solutions for microbial fuel cells ("living batter-(2018) ies"), providing guidance on lab procedures, literature review, hypothesis development, and research presentations. Taught students the fundamentals of microbial fuel cell theory, how to make and interpret performance measurements, and led Python coding exercises covering programming basics, data collection, analysis, and plotting.

Research As a graduate student I worked with high school students on computational projects within the Mentoring atmospheric chemistry and biochemistry domains. Provided assistance in literature review, hypothesis (2018-2021) development, preparation and running of simulations, and preparation of papers and oral presentations summarizing their research.